对数函数的图像与性质 (二)

▲ 复习与回顾

▲ 例题分析…过定点问题

目录

▲ 例题分析…比较对数大小

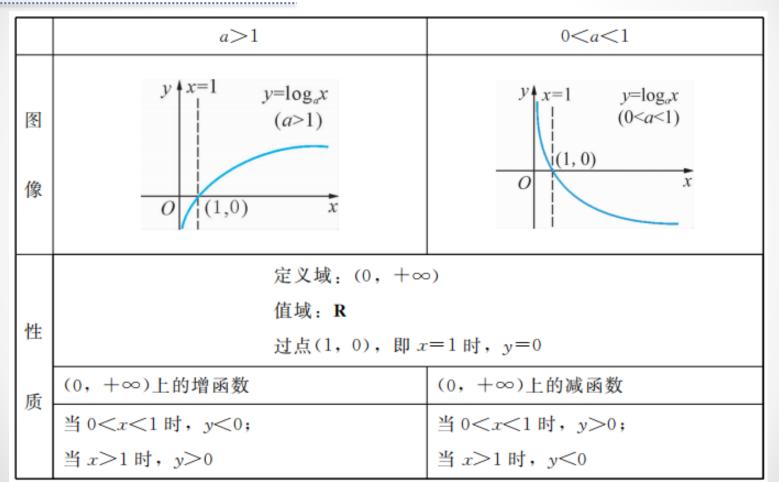
▲ 例题分析…解不等式

看溦课3

▲ 拓展练习

看溦课4

复习与回顾


对数函数的概念

一般地,形如函数 $y = \log_a x (a > 0 \perp a \neq 1)$ 的函数叫做对数函数, 其中 x 是自变量,对数函数的定义域是 $(0, +\infty)$.

对数函数的图像与性质

- 一般地,对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1$) 具有下列性质:
- (1)函数的定义域为(0, +∞), 值域为 R;
- (2)当 x=1 时,函数值 y=0;
- (3)当a>1 时,函数在(0, + ∞)内是增函数;当 0< a<1 时,函数在(0, + ∞)内是减函数.

对数函数的图像与性质

例题分析…过定点问题

例13: 已知对数函数 $f(x) = \log_a x \ (a > 0 \perp a \neq 1)$ 的图像经过点(9,2) 求f(3)、f(1)、 $f(\frac{1}{27})$ 的值.

解: 把(9,2)代入 $f(x) = \log_a x$ 中,得到 $f(9) = \log_a 9 = 2$

化为指数式得 $a^2 = 9$,所以 a = 3 (a = -3舍去)

则对数函数的解析式为 $f(x) = \log_3 x$

所以
$$f(3) = \log_3 3 = 1$$
 $f(1) = \log_3 1 = 0$

$$f\left(\frac{1}{27}\right) = \log_3 \frac{1}{27} = \log_3 3^{-3} = -3$$

同步练习 ~

1、填空

- (2) 函数 $y = \log_{\frac{1}{5}} x$, 则 $f(1) = _____, f(5) = ____, f(25) = _____;$
- (3) 已知 $y = \log_2 x$,则 f(a) = -3 ,则 a =______
- 2、已知 $f(x) = \lg x$, (1) 求 f(0.1) 的值; (2) 若 f(a) = -2 , 求 a 的值

周步练习一 答案

1、填空

(2) 函数
$$y = \log_{\frac{1}{5}} x$$
 , 则 $f(1) = 0$, $f(5) = -1$, $f(25) = -2$;

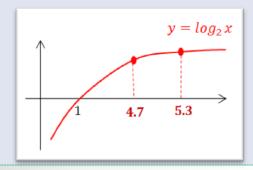
(3) 已知
$$y = \log_2 x$$
 ,则 $f(a) = -3$,则 $a = _{8}$

2、已知
$$f(x) = \lg x$$
 , (1) 求 $f(0.1)$ 的值; (2) 若 $f(a) = -2$, 求 a 的值

解: (1)
$$f(0.1) = \lg 0.1 = \lg \frac{1}{10} = \lg 10^{-1} = -1$$

例题分析…比较对数大小

例题 15. 比较下列各组中两个数值的大小


(1) $log_2 5.3 = log_2 4.7$

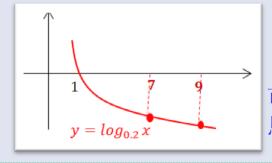
解: 因为底数 2>1,

所以 $y = log_2 x$ 在 $(0, +\infty)$ 上是增函数.

又因为 5.3>4.7,

所以 $log_2 5.3 > log_2 4.7$

可借助图像思考和比较


(2) $log_{0.2} 7 = log_{0.2} 9$

解: 因为底数 0 < 0.2 < 1,

所以 $y = log_{0.2} x$ 在(0,+∞)上是减函数.

又因为7<9,

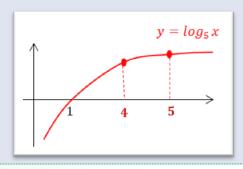
所以 log_{0.2} 7 > log_{0.2} 9

可借助图像思考和比较

例题分析…比较对数大小

例题 15. 比较下列各组中两个数值的大小

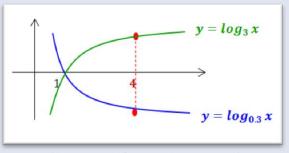
(3) $log_5 4$ 与 1


解:将1化为同底对数再比较

令
$$1 = log_5 5$$
,因为底数 $5 > 1$,

所以 $y = log_5 x$ 在(0,+∞)上是增函数.

又因为4 < 5,所以 $log_5 4 < log_5 5$


即 $log_54 < 1$

* (4) $log_3 4 = log_{0.3} 4$

解: 因为 $log_3 4 > log_3 1 = 0$,

所以 $log_3 4 > log_{0.3} 4$

可借助图像思考和比较

比较下列各组中两个数值的大小

(1)
$$lg6 = lg8$$

(2)
$$log_{\frac{2}{3}}8 = 1$$

同步练习二 答案

比较下列各组中两个数值的大小

- (1) lg 6 < lg 8
- (2) 先将 1 转化为 $\log_{\frac{2}{3}}\frac{2}{3}$ 再比较大小,得到 $\log_{\frac{2}{3}}8 < 1$

例题 16 (1) $\log_4 x < \log_4 5$

解:因为 $y = \log_4 x$ 在(0,+∞)上是增函数,由 $\log_4 x < \log_4 5$ 得 x < 5,又因为x > 0则 0 < x < 5,所以不等式的解集为 (0,5)

(2) $\log_{\frac{4}{5}} x > 1$

解: 令
$$1 = \log_{\frac{1}{5}} \frac{4}{5}$$
,题目可转化为 $\log_{\frac{1}{5}} x > \log_{\frac{1}{5}} \frac{4}{5}$
因为 $y = \log_{\frac{1}{5}} x$ 在(0,+∞)上是减函数
所以 $x < \frac{4}{5}$,又因为 $x > 0$ 则 $0 < x < \frac{4}{5}$,所以不等式的解集为 $(0, \frac{4}{5})$

▲ 周步练习三

(1) 已知 $log_4 x > log_4 2$,求 x 的取值范围.

(2) 已知 $log_{0.3} M > log_{0.3} N$,比较 M 与 N 的大小.

同步练习三 答案

(1) 已知 $log_4 x > log_4 2$,求不等式的解集

解: 因为 $y = \log_4 x$ 在(0,+ ∞) 上是增函数,由 $\log_4 x > \log_4 2$ 得 x > 2,满足 x > 0 所以不等式的解集为 (2,+ ∞)

(2) 已知 $log_{0.3} M > log_{0.3} N$,比较 M 与 N 的大小.

解:因为 $y = \log_{0.3} x$ 在(0,+∞)上是减函数,由 $\log_{0.3} M > \log_{0.3} N$ 得 所以M < N

课堂小结

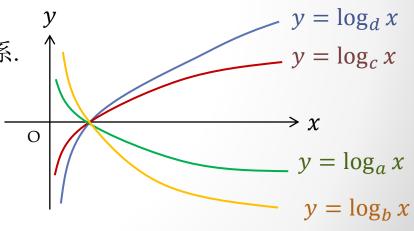
这节课我们结合了对数函数的图像与性质,解决了一些简单的数学问题:

- 1、过定点求对数函数的解析式、代入法求函数值
- 2、对数式比较大小的方法:
- ① 同底时用单调性画图比较
- ② 不同底时取中间值比较
- 结合图像分析更清晰!
- 3、解不等式

拓展练习

1、求函数的定义域

$$(1) \ y = \sqrt{1 - \lg x}$$


$$(2) \ \ y = \frac{1}{\sqrt{\log_2 x}}$$

笔记——求函数的定义域:

- 1、 此有分数, 要使分母不为0
- 2、 ぬ有偶次根式,要使被开方数≥0
- 3、此有对数,要使真数>0

2、如果 $\log_a M > \log_a N$,请比较 M 与 N 的大小. (分类讨论)

3、请根据图像,判断 a、b、c、d 的大小关系.

拓展练习——答案

1、求函数的定义域

$$(1) \ y = \sqrt{1 - \lg x}$$

被开方数≥0 真数>0

解: 要使函数有意义,令
$$\left\{\begin{array}{c} 1-lgx \stackrel{>}{\geq} 0 \\ x>0 \end{array}\right.$$
,即 $\left\{\begin{array}{c} lgx \leq 1 \\ x>0 \end{array}\right.$,化为 $\left\{\begin{array}{c} lgx \leq lg \ 10 \\ x>0 \end{array}\right.$

解得 $0 < x \le 10$... 所求函数的定义域为 $\{x | 0 < x \le 10\}$

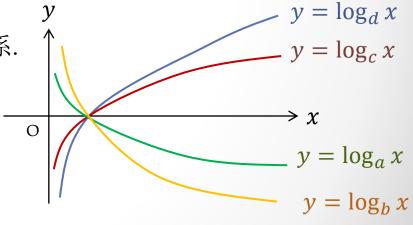
$$(2) \ \ y = \frac{1}{\sqrt{\log_2 x}}$$

1 被开方数≥0且分母不为0 真数>0

解: 要使函数有意义,令
$$\left\{\begin{array}{c} log_2 x > 0\\ x > 0 \end{array}\right.$$
,即 $\left\{\begin{array}{c} log_2 x > log_2 1\\ x > 0 \end{array}\right.$

解得 x>1 :. 所求函数的定义域为 $(1,+\infty)$

拓展练习——答案


2、如果 $\log_a M > \log_a N$,请比较 M 与 N 的大小. (分类讨论)

解: ① 当底数 0 < a < 1 时,对数函数 $y = log_a M \times (0, +\infty)$ 上是减函数,则 M < N;

② 当底数 a > 1 时,对数函数 $y = log_a M \text{在}(0, +\infty)$ 上是增函数,则 M > N

3、请根据图像,判断 a、b、c、d 的大小关系.

解: 0 < a < b < 1 < d < c

请看溦课4

课后作业

请点开"课后作业", 完成后拍照上传

系别:	班级:	姓名:	学号:
1、已知对数	函数的图像过点 (16	,2) , 请求出:	
① 函数的解	折式: ② f	$f(1)$ 、 $f(\frac{1}{16})$ 、 $f(64)$ 的信	Ĭ
2、已知是对	数函数,且 f(25) =-	- 2,则 f(x) =	:
f(5) =	·		
3、比较下列	各组中两个数值的大	小	
(1) lg 6 与 l	g8	(2) log ₀ :	35 与 log ₀₃ 7
(3) log _{0.3} 5	与 0	(4) log ₂ 7	τ 与 $\log_{\frac{3}{2}}\pi$
4、已知log_3	3 > log _a 5,则 a 的剂	市用是多少?	
解:	To to and to the		
**	大利高数的ウット		
* 5、相限: 3 (1) $y = \sqrt{lg}$	於下列函数的定义域 	(2) ···	_ 1
	ix.		$= \frac{1}{\sqrt{\log_{0.5} x}}$
解:		解:	

对粉函粉的图像与性质(一) 運后作业